Unmanned aerial surveys of sand cay habitats and wildlife on the far northern Great Barrier Reef.

Lorenzo Fiori¹, Richard Fitzpatrick ², Andrew Dunstan³, Jeff Pickford⁴, Mark Read⁵, Lee Hess⁶, Katharine Robertson⁷, Tayce Cook⁸, Paul Coggan⁹, Warren Meredith³, Steve Bradshaw⁴, John Sergeev⁷, Taka Shimada⁶, Jimmy Passi⁷, Aiden Deemal⁸, Graham Hinchliffe¹, Ashray Doshi¹, Robin Beaman⁹, Graham Hemson³, Daniel Breen¹ and Barbara Breen¹.

¹Institute of Applied Ecology, Auckland University of Technology, bbreen@aut.ac.nz
²Biopixel Productions, James Cook University, richard.fitzpatrick@biopixel.tv
³Queensland Depart. of National Parks, Sport and Racing, Andrew.Dunstan@ehp.qld.gov.au
⁴Department of Natural Resources and Mines, Jeffrey.Pickford@dnhm.qld.gov.au
⁵Great Barrier Reef Marine Park Authority, Townsville, mark.read@gbrmpa.gov.au
⁶James Cook University, Townsville, takahiro.shimada@my.jcu.edu.au
⁷Meriam Nation, c/o chairperson@mergedkemle.org.au
⁸Wuthathi Nation, c/o Deborah.Eastop@balkanu.com.au
⁹James Cook University, Cairns, robin.beaman@jcu.edu.au

Keywords:
coral cay, reefs, turtles, seabirds, nesting, unmanned

Abstract:
Coral reef sand cays are unstable accumulations of the calcium carbonate skeletons of marine organisms. These provide important nesting and roosting habitats for endangered species such as the green turtle (Chelonia mydas). We describe the use of multi-rotor unmanned aircraft systems (UAS) to map topography and wildlife on two sand cays on the northern Great Barrier Reef. We compare the UAS techniques with ground-based survey methods and estimates of species abundance. UAS potentially provide an effective way to rapidly survey island habitats and species from the air, particularly in harsh and remote environments and where ground-based observations may disturb wildlife. In this study, UAS complemented and added value to research on changes in island morphology, nesting habitats, population dynamics and mark recapture estimates. We analyse and compare data from alternative methods and suggest protocols for flying in these environments.
Figure 1. Green turtle (*Chelonia mydas*) on coral cay.